Публікації автора:
[1] A. I. Danilenko. On cocycles compatible with normalizers of full groups of measure space transformations // Dop. Nats. Akad. Nauk Ukr. 1994. No 7. P. 14-17 . [2] A. I. Danilenko. The topological structure of Polish groups and groupoids of measure space transformations // Publ. RIMS Kyoto Univ. 1995. V. 31. P. 913-940. [3] A. I. Danilenko and V. Ya. Golodets. On extension of cocycles to normalizer elements, outer conjugacy and related problems // Trans. Amer. Math. Soc. 1996. V. 348. P. 4857-4882. [4] A. I. Danilenko. Comparison of cocycles of measured equivalence relations and lifting problems // Ergod. Th. & Dyn. Syst. 1998. V. 18. P. 125-151. [5] A. I. Danilenko. On non-coalescent ergodic skew products and semigroups of their commutors // Dop. Nats. Akad. Nauk Ukr. 1998. No 9. P. 17-21. [6] A. I. Danilenko. Quasinormal subrelations of ergodic equivalrence relations // Proc. Amer. Math. Soc. 1998 V. 126. P. 3361-3370. [7] A. I. Danilenko. Endomorphisms of measured equivalence relations, cocycles with values in non locally compact groups and applications // Ergod. Th. & Dyn. Syst. 1999. V.19. P. 571—590. [8] A. I. Danilenko and M. Lemanczyk. Isometric extensions, 2-cocycles and ergodicity of -29- skew products // Studia Math. 1999. V. 137. P. 123-142. [9] A. I. Danilenko. On subrelations of ergodic measured type III equivalence relations // Colloq. Math. 2000. V. 84/85. P. 13-22. [10] A. I. Danilenko and T. Hamachi. On measure theoretical analogues of the Takesaki structure theorem for type III factors // Colloq. Math. 2000. V.84/85. P. 485-493. [11] A. I. Danilenko. On cocycles with values in group extensions. Generic results // Matemat. Fizika, Analiz, Geometriya. 2000. V. 7. P. 153-171. [12] A. I. Danilenko. Strong orbit equivalence of locally compact Cantor minimal systems // Internat. J. Math. 2001. V. 12. P. 113-123. [13] A. I. Danilenko. Funny rank-one weak mixing for nonsingular Abelian actions // Isr. J. Math. 2001. V. 121. P. 29-54. [14] A. I. Danilenko. Entropy theory from orbital point of view // Monatsh. Math. 2001. V.134. P. 121-141. [15] A. I. Danilenko and K. K. Park. Generators and Bernoullian factors for amenable actions and cocycles on their orbits // Ergod. Th. & Dyn. Syst. 2002. V. 22. P. 1715-1745. [16] A. I. Danilenko and C. E. Silva. Multiple and polynomial recurrence for abelian actions in infinite measure // J. London Math. Soc. 2004. V. 69. P. 183-200. [17] A. I. Danilenko. Infinite rank one actions and nonsingular Chacon transformations // Illinois J. Math. 2004. V. 48. P. 769-786. [18] A. I. Danilenko and M. Lemanczyk. A class of multipliers for // Isr. J. Math. 2005. V. 148. P. 137-168. -30- [19] A. I. Danilenko. Explicit solution of Rokhlin's problem on homogeneous spectrum and applications // Ergod. Th. & Dyn. Syst. 2006. V. 26. P. 1467-1490. [20] A. I. Danilenko. Mixing rank-one actions for infinite sums of finite groups // Isr. J. Math. 2006. V. 156. P. 341-358. [21] A. I. Danilenko and C. E. Silva. Mixing rank-one actions of locally compact Abelian groups // Ann. Inst. H. Poincare, Probab. Statist. 2007. V. 43. P. 375-398. [22] A. I. Danilenko. On simplicity concepts for ergodic actions // J. d'Anal. Math. 2007. V. 102. P. 77-118. [23] A. I. Danilenko. (C,F)-actions in ergodic theory // Progr. in Math. 2007. V. 265. P. 325-351. |